login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360658
a(1) = 1; a(n) = -Sum_{k=2..n} k^3 * a(floor(n/k)).
4
1, -8, -35, -27, -152, 91, -252, -252, -252, 873, -458, -674, -2871, 216, 3591, 3591, -1322, -1322, -8181, -9181, 80, 12059, -108, -108, -108, 19665, 19665, 16921, -7468, -37843, -67634, -67634, -31697, 12520, 55395, 55395, 4742, 66473, 125792, 125792, 56871, -26478
OFFSET
1,2
LINKS
FORMULA
Sum_{k=1..n} k^3 * a(floor(n/k)) = 0 for n > 1.
G.f. A(x) satisfies x * (1 - x) = Sum_{k>=1} k^3 * (1 - x^k) * A(x^k).
MATHEMATICA
f[p_, e_] := If[e == 1, -p^3, 0]; f[2, e_] := Switch[e, 1, -9, 2, 8, _, 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[s, 100]] (* Amiram Eldar, May 10 2023 *)
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A360658(n):
if n <= 1:
return 1
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c -= ((j2*(j2-1))**2-(j*(j-1))**2>>2)*A360658(k1)
j, k1 = j2, n//j2
return c-((n*(n+1))**2-((j-1)*j)**2>>2) # Chai Wah Wu, Apr 01 2023
CROSSREFS
Partial sums of A359531.
Cf. A336277.
Sequence in context: A158991 A265161 A303805 * A304852 A305249 A316549
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 01 2023
STATUS
approved