OFFSET
0,3
LINKS
Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = Sum_{k=1..n} tau(k^3).
a(n) = a(n-1) + A048785(n) for n >= 1, a(0) = 0.
EXAMPLE
MAPLE
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+numtheory[tau](n^3)) end:
seq(a(n), n=0..100); # Alois P. Heinz, May 08 2022
MATHEMATICA
Accumulate[Join[{0}, Table[DivisorSigma[0, k^3], {k, 1, 50}]]] (* Amiram Eldar, May 08 2022 *)
PROG
(Python) from sympy import divisor_count
def A048785(n): return divisor_count(n**3)
print([A353551(n) for n in range(1, 58)])
(PARI) a(n) = sum(k=1, n, numdiv(k^3)); \\ Michel Marcus, May 08 2022
(Python)
from math import prod
from sympy import factorint
def A353551(n): return sum(prod(3*e+1 for e in factorint(k).values()) for k in range(1, n+1)) # Chai Wah Wu, May 10 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Karl-Heinz Hofmann, May 07 2022
STATUS
approved