login
A353551
a(n) = Sum_{k=1..n} tau(k^3), where tau is the number of divisors function A000005.
2
0, 1, 5, 9, 16, 20, 36, 40, 50, 57, 73, 77, 105, 109, 125, 141, 154, 158, 186, 190, 218, 234, 250, 254, 294, 301, 317, 327, 355, 359, 423, 427, 443, 459, 475, 491, 540, 544, 560, 576, 616, 620, 684, 688, 716, 744, 760, 764, 816, 823, 851, 867, 895, 899, 939, 955, 995
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} tau(k^3).
a(n) = a(n-1) + A048785(n) for n >= 1, a(0) = 0.
EXAMPLE
A048785(0) = 0
+ A048785(1) = 1
+ A048785(2) = 4
+ A048785(3) = 4
------------------
= A353551(3) = 9
MAPLE
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+numtheory[tau](n^3)) end:
seq(a(n), n=0..100); # Alois P. Heinz, May 08 2022
MATHEMATICA
Accumulate[Join[{0}, Table[DivisorSigma[0, k^3], {k, 1, 50}]]] (* Amiram Eldar, May 08 2022 *)
PROG
(Python) from sympy import divisor_count
def A048785(n): return divisor_count(n**3)
def A353551(n): return sum(A048785(n) for n in range(1, n))
print([A353551(n) for n in range(1, 58)])
(PARI) a(n) = sum(k=1, n, numdiv(k^3)); \\ Michel Marcus, May 08 2022
(Python)
from math import prod
from sympy import factorint
def A353551(n): return sum(prod(3*e+1 for e in factorint(k).values()) for k in range(1, n+1)) # Chai Wah Wu, May 10 2022
CROSSREFS
Partial sums of A048785.
Cf. A000005, A006218, A061503 (squares).
Sequence in context: A315101 A315102 A315103 * A315104 A315105 A315106
KEYWORD
nonn
AUTHOR
Karl-Heinz Hofmann, May 07 2022
STATUS
approved