login
A048785
a(0) = 0; a(n) = tau(n^3), where tau = number of divisors (A000005).
25
0, 1, 4, 4, 7, 4, 16, 4, 10, 7, 16, 4, 28, 4, 16, 16, 13, 4, 28, 4, 28, 16, 16, 4, 40, 7, 16, 10, 28, 4, 64, 4, 16, 16, 16, 16, 49, 4, 16, 16, 40, 4, 64, 4, 28, 28, 16, 4, 52, 7, 28, 16, 28, 4, 40, 16, 40, 16, 16, 4, 112, 4, 16, 28, 19, 16, 64, 4, 28, 16
OFFSET
0,3
COMMENTS
The inverse Mobius transform of A074816. - R. J. Mathar, Feb 09 2011
a(n) is also the number of ordered triples (i,j,k) of positive integers such that i|n, j|n, k|n and i,j,k are pairwise relatively prime. - Geoffrey Critzer, Jan 11 2015
LINKS
FORMULA
a(n) = Sum_{d|n} 3^omega(d), where omega(x) is the number of distinct prime factors in the factorization of x. - Benoit Cloitre, Apr 14 2002
Multiplicative with a(p^e) = 3e+1. - Mitch Harris, Jun 09 2005
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(3^omega(k)/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 26 2018
For n>0, a(n) = Sum_{d|n} mu(d)^2*tau(d)*tau(n/d). - Ridouane Oudra, Nov 18 2019
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 2/p^s). - Vaclav Kotesovec, May 15 2021
Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021
EXAMPLE
a(6) = 16 because there are 16 divisors of 6^3 = 216: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216.
Also there are 16 ordered triples of divisors of 6 that are pairwise relatively prime: (1,1,1), (1,1,2), (1,1,3), (1,1,6), (1,2,1), (1,2,3), (1,3,1), (1,3,2), (1,6,1), (2,1,1), (2,1,3), (2,3,1), (3,1,1), (3,1,2), (3,2,1), (6,1,1).
MAPLE
seq(numtheory:-tau(n^3), n=0..100); # Robert Israel, Jan 11 2015
MATHEMATICA
Join[{0, 1}, Table[Product[3 k + 1, {k, FactorInteger[n][[All, 2]]}], {n, 2, 69}]] (* Geoffrey Critzer, Jan 11 2015 *)
Join[{0}, DivisorSigma[0, Range[70]^3]] (* Harvey P. Dale, Jan 23 2016 *)
PROG
(PARI) A048785(n) = if(!n, n, numdiv(n^3)); \\ Antti Karttunen, May 19 2017
(PARI) print1("0, "); for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, May 15 2021
print1("0, "); for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^4)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
(Python)
from math import prod
from sympy import factorint
def A048785(n): return 0 if n == 0 else prod(3*e+1 for e in factorint(n).values()) # Chai Wah Wu, May 10 2022
(Python) from sympy import divisor_count
def A048785(n): return divisor_count(n**3) # Karl-Heinz Hofmann, May 10 2022
CROSSREFS
KEYWORD
nonn,mult
STATUS
approved