login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353042
G.f. A(x) satisfies: A(x) = 1 + x * A(4*x/(1 + 3*x)) / (1 - x).
1
1, 1, 5, 73, 4301, 1065361, 1079026325, 4404504773593, 72088402948928861, 4722943066827454121761, 1237982543178169058402322725, 1298086594246614900499652230482793, 5444532149619463867564918804810528611821, 91343917667481554378430257939829428893551284401
OFFSET
0,3
FORMULA
G.f.: Sum_{k>=0} 2^(k*(k-1)) * (x/(1 - x))^k.
a(n) = Sum_{k=0..n} binomial(n-1,k-1) * 2^(k*(k-1)).
MATHEMATICA
nmax = 13; A[_] = 0; Do[A[x_] = 1 + x A[4 x/(1 + 3 x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n - 1, k - 1] 2^(k (k - 1)), {k, 0, n}], {n, 0, 13}]
CROSSREFS
Cf. A006898, A053763, A135756 (partial sums), A353041.
Sequence in context: A334282 A317341 A012640 * A128889 A131958 A051156
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 19 2022
STATUS
approved