login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353041
G.f. A(x) satisfies: A(x) = 1 + x * A(3*x/(1 + 2*x)) / (1 - x).
1
1, 1, 4, 34, 820, 62140, 14651728, 10547347384, 22950318347248, 150277943334242320, 2955664382713520203072, 174478760893191691170298912, 30905073486465684713191125079360, 16423574117627547687292156418920831936, 26184104208316120602662312616366633316565248
OFFSET
0,3
FORMULA
G.f.: Sum_{k>=0} 3^(k*(k-1)/2) * (x/(1 - x))^k.
a(n) = Sum_{k=0..n} binomial(n-1,k-1) * 3^(k*(k-1)/2).
MATHEMATICA
nmax = 14; A[_] = 0; Do[A[x_] = 1 + x A[3 x/(1 + 2 x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n - 1, k - 1] 3^(k (k - 1)/2), {k, 0, n}], {n, 0, 14}]
CROSSREFS
Cf. A006898, A047656, A135755 (partial sums), A353042.
Sequence in context: A088077 A358326 A162079 * A113231 A055621 A000860
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 19 2022
STATUS
approved