login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353045
Primes of the form p*q*(p+q)+1 where (p,q) is a twin prime pair.
1
421, 3433, 431881, 746353, 2122213, 84287689, 161242273, 574990681, 1372256173, 6589289569, 8315492209, 13246972549, 40692828541, 52396140061, 75866105281, 77916431221, 82987207333, 91919299573, 140685402049, 152665872493, 188144420089, 199536434869, 265301989801, 404110652329, 406594932241
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 431881 is a term because (59, 61) is a twin prime pair with 59*61*(59+61)+1 = 431881, and 431881 is prime.
MAPLE
P:= select(isprime, {seq(i, i=3..10^6, 2)}):
T:= P intersect map(`-`, P, 2):
R:= map(t -> t*(t+2)*(2*t+2)+1, T):
sort(convert(select(isprime, R), list));
MATHEMATICA
Select[#[[1]]#[[2]]Total[#]+1&/@Select[Partition[Prime[Range[1000]], 2, 1], #[[2]]-#[[1]] == 2&], PrimeQ] (* Harvey P. Dale, Aug 17 2024 *)
PROG
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen(): # generator of terms
p, q = 3, 5
while True:
if q == p+2:
t = p*q*(p+q)+1
if isprime(t):
yield t
p, q = q, nextprime(q)
print(list(islice(agen(), 25))) # Michael S. Branicky, Apr 19 2022
CROSSREFS
Cf. A001359.
Sequence in context: A068701 A340157 A302284 * A302732 A251198 A302533
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Apr 19 2022
STATUS
approved