login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350516
a(n) is the least k>1 such that omega(k) is equal to (omega(n*k + 1) - 1)/n.
1
5, 97, 443, 5801, 42697, 7813639, 10303967, 1225192093
OFFSET
1,1
COMMENTS
Are all terms prime numbers?
a(9) <= 14567138141, a(10) <= 5509396663871, a(11) <= 4128894057139, a(12) <= 13264466350165447, a(13) <= 6115610326638653. - Daniel Suteu, Mar 14 2022
EXAMPLE
a(2) = 97 because omega(97) = (omega(2*97 + 1) - 1)/2 = (omega(3*5*13) - 1)/2 = 1.
MATHEMATICA
a[n_] := Module[{k = 2}, While[PrimeNu[k] != (PrimeNu[n*k + 1] - 1)/n, k++]; k]; Array[a, 5] (* Amiram Eldar, Mar 09 2022 *)
PROG
(PARI) a(n) = my(k=2); while (omega(k) != (omega(n*k + 1) - 1)/n, k++); k; \\ Michel Marcus, Mar 09 2022
(Python)
from sympy import factorint
for n in range(1, 8):
for k in range(2, 10**10):
if len(factorint(k).keys())*n+1==len(factorint(k*n+1).keys()):
print(n, k)
break # Martin Ehrenstein, Mar 14 2022
CROSSREFS
Cf. A001221 (omega).
Sequence in context: A194609 A139950 A102734 * A342443 A117341 A295190
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(8) from Martin Ehrenstein, Mar 14 2022
STATUS
approved