login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350518
a(n) is the least prime q such that q*(n+1)-n is the square of a prime.
2
5, 2, 3, 73, 5, 241, 2, 41, 13, 409, 3, 1321, 13, 113, 19, 601, 17, 73, 7, 41, 541, 97, 2, 409, 109, 97081, 7, 1033, 5, 3121, 31, 17, 313, 937, 11, 601, 37, 73, 43, 5881, 5, 20857, 13, 113, 409, 9241, 2, 193, 457, 89, 331, 17137, 53, 313, 31, 401, 61, 2113, 3, 3889, 61, 257, 571, 97, 29, 241321
OFFSET
1,1
LINKS
FORMULA
a(n)*(n+1)-n = A350517(n)^2.
EXAMPLE
a(4) = 73 because 73 is prime, 73*(4+1)-4 = 361 = 19^2 where 19 is prime, and no smaller prime than 73 works.
MAPLE
g:= proc(n) local p, M, a, m, q;
M:= sort(map(t -> rhs(op(t)), [msolve(p^2=1, n+1)]));
for a from 0 do
for m in M do
p:= a*(n+1)+m;
if not isprime(p) then next fi;
q:= (p^2+n)/(n+1);
if isprime(q) then return q fi
od od:
end proc:
map(g, [$1..100]);
MATHEMATICA
a[n_] := Module[{q = 2, p}, While[! IntegerQ[(p = Sqrt [q*(n + 1) - n])] || ! PrimeQ[p], q = NextPrime[q]]; q]; Array[a, 70] (* Amiram Eldar, Jan 03 2022 *)
PROG
(PARI) a(n) = my(q=2, p); while(! (issquare(q*(n+1)-n, &p) && isprime(p)), q = nextprime(q+1)); q; \\ Michel Marcus, Jan 03 2022
(Python)
from sympy import integer_nthroot, isprime, nextprime
def A350518(n):
q = 2
while True:
a, b = integer_nthroot(q*(n+1)-n, 2)
if b and isprime(a):
return q
q = nextprime(q) # Chai Wah Wu, Jan 04 2022
CROSSREFS
Cf. A350517.
Sequence in context: A291690 A073943 A193797 * A214662 A277581 A307381
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 02 2022
STATUS
approved