Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #64 Mar 15 2022 02:59:25
%S 5,97,443,5801,42697,7813639,10303967,1225192093
%N a(n) is the least k>1 such that omega(k) is equal to (omega(n*k + 1) - 1)/n.
%C Are all terms prime numbers?
%C a(9) <= 14567138141, a(10) <= 5509396663871, a(11) <= 4128894057139, a(12) <= 13264466350165447, a(13) <= 6115610326638653. - _Daniel Suteu_, Mar 14 2022
%e a(2) = 97 because omega(97) = (omega(2*97 + 1) - 1)/2 = (omega(3*5*13) - 1)/2 = 1.
%t a[n_] := Module[{k = 2}, While[PrimeNu[k] != (PrimeNu[n*k + 1] - 1)/n, k++]; k]; Array[a, 5] (* _Amiram Eldar_, Mar 09 2022 *)
%o (PARI) a(n) = my(k=2); while (omega(k) != (omega(n*k + 1) - 1)/n, k++); k; \\ _Michel Marcus_, Mar 09 2022
%o (Python)
%o from sympy import factorint
%o for n in range(1, 8):
%o for k in range(2, 10**10):
%o if len(factorint(k).keys())*n+1==len(factorint(k*n+1).keys()):
%o print(n, k)
%o break # _Martin Ehrenstein_, Mar 14 2022
%Y Cf. A001221 (omega).
%K nonn,more
%O 1,1
%A _Juri-Stepan Gerasimov_, Mar 09 2022
%E a(8) from _Martin Ehrenstein_, Mar 14 2022