OFFSET
0,3
COMMENTS
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.
EXAMPLE
Representative partitions for each of the a(16) = 11 alternating products:
(16) -> 16
(14,1,1) -> 14
(12,2,2) -> 12
(10,3,3) -> 10
(8,4,4) -> 8
(9,3,2,1,1) -> 6
(10,4,2) -> 5
(12,3,1) -> 4
(6,4,2,2,2) -> 3
(10,5,1) -> 2
(8,8) -> 1
MATHEMATICA
revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[Union[revaltprod/@IntegerPartitions[n]], IntegerQ]], {n, 0, 30}]
CROSSREFS
The even-length version is A000035.
The non-reverse version is A028310.
The version for factorizations has special cases:
- no changes: A046951
- non-reverse: A046951
- non-integer: A038548
- non-reverse non-integer: A347460
- non-integer odd-length: A347708
- non-reverse non-integer odd-length: A347708
The odd-length version is a(n) - A059841(n).
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A304792 counts distinct subset-sums of partitions.
A345926 counts possible alternating sums of permutations of prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 13 2021
STATUS
approved