OFFSET
1,6
COMMENTS
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.
EXAMPLE
The a(n) factorizations for n = 2, 6, 8, 12, 24, 30, 48, 60:
2 6 8 12 24 30 48 60
2*3 2*4 2*6 3*8 5*6 6*8 2*30
2*2*2 3*4 4*6 2*15 2*24 3*20
2*2*3 2*12 3*10 3*16 4*15
2*2*6 2*3*5 4*12 5*12
2*3*4 2*3*8 6*10
2*2*2*3 2*4*6 2*5*6
3*4*4 3*4*5
2*2*12 2*2*15
2*2*2*6 2*3*10
2*2*3*4 2*2*3*5
2*2*2*2*3
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
revaltprod[q_]:=Product[q[[-i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[facs[n], revaltprod[#]>1&]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 12 2021
STATUS
approved