login
A347705
Number of factorizations of n with reverse-alternating product > 1.
10
0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 8, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2
OFFSET
1,6
COMMENTS
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.
FORMULA
a(n) = A001055(n) - A347438(n).
EXAMPLE
The a(n) factorizations for n = 2, 6, 8, 12, 24, 30, 48, 60:
2 6 8 12 24 30 48 60
2*3 2*4 2*6 3*8 5*6 6*8 2*30
2*2*2 3*4 4*6 2*15 2*24 3*20
2*2*3 2*12 3*10 3*16 4*15
2*2*6 2*3*5 4*12 5*12
2*3*4 2*3*8 6*10
2*2*2*3 2*4*6 2*5*6
3*4*4 3*4*5
2*2*12 2*2*15
2*2*2*6 2*3*10
2*2*3*4 2*2*3*5
2*2*2*2*3
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
revaltprod[q_]:=Product[q[[-i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[facs[n], revaltprod[#]>1&]], {n, 100}]
CROSSREFS
Positions of 1's are A000430.
The weak version (>= instead of >) is A001055, non-reverse A347456.
The non-reverse version is A339890, strict A347447.
The version for reverse-alternating product 1 is A347438.
Allowing any integer reciprocal alternating product gives A347439.
The even-length case is A347440, also the opposite reverse version.
Allowing any integer rev-alt product gives A347442, non-reverse A347437.
The version for partitions is A347449, non-reverse A347448.
A001055 counts factorizations (strict A045778, ordered A074206).
A038548 counts possible rev-alt products of factorizations, integer A046951.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A292886 counts knapsack factorizations, by sum A293627.
A347707 counts possible integer reverse-alternating products of partitions.
Sequence in context: A164677 A001511 A265331 * A244569 A266928 A285324
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 12 2021
STATUS
approved