OFFSET
2,1
COMMENTS
EXAMPLE
The sequence of terms together with their prime indices begins:
4: {1,1} 106: {1,16} 254: {1,31}
6: {1,2} 118: {1,17} 262: {1,32}
9: {2,2} 122: {1,18} 274: {1,33}
14: {1,4} 134: {1,19} 278: {1,34}
21: {2,4} 142: {1,20} 298: {1,35}
26: {1,6} 146: {1,21} 302: {1,36}
34: {1,7} 158: {1,22} 314: {1,37}
38: {1,8} 166: {1,23} 326: {1,38}
46: {1,9} 178: {1,24} 334: {1,39}
58: {1,10} 194: {1,25} 346: {1,40}
62: {1,11} 202: {1,26} 358: {1,41}
74: {1,12} 206: {1,27} 362: {1,42}
82: {1,13} 214: {1,28} 382: {1,43}
86: {1,14} 218: {1,29} 386: {1,44}
94: {1,15} 226: {1,30} 394: {1,45}
MATHEMATICA
Table[Min@@Table[Prime[k]*Prime[n-k], {k, n-1}], {n, 2, 30}]
Take[DeleteDuplicates[SortBy[{Times@@#, Total[PrimePi[#]]}&/@Tuples[ Prime[ Range[ 200]], 2], {Last, First}], GreaterEqual[#1[[2]], #2[[2]]]&][[All, 1]], 60] (* Harvey P. Dale, Sep 06 2022 *)
PROG
(PARI) a(n) = vecmin(vector(n-1, k, prime(k)*prime(n-k))); \\ Michel Marcus, Dec 03 2020
CROSSREFS
A024697 is the sum of the same semiprimes.
A098350 has this sequence as antidiagonal minima.
A338904 has this sequence as row minima.
A339114 (this sequence) is the squarefree case for n > 4.
A339115 is the greatest among the same semiprimes.
A037143 lists primes and semiprimes.
A056239 gives the sum of prime indices of n.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2020
STATUS
approved