login
A046315
Odd semiprimes: odd numbers divisible by exactly 2 primes (counted with multiplicity).
119
9, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 121, 123, 129, 133, 141, 143, 145, 155, 159, 161, 169, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 289
OFFSET
1,1
COMMENTS
In general, the prime factors, p, of a(n) are given by: p = sqrt(a(n) + (k/2)^2) +- (k/2) where k is the positive difference of the prime factors. Equivalently, p = (1/2)( sqrt(4a(n) + k^2) +- k ). - Wesley Ivan Hurt, Jun 28 2013
LINKS
Zak Seidov and K. D. Bajpai, Table of n, a(n) for n = 1..10000 (first 1956 terms from Zak Seidov)
FORMULA
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)) - P(s)/2^s, for s>1, where P is the prime zeta function. - Amiram Eldar, Nov 21 2020
EXAMPLE
From K. D. Bajpai, Jul 05 2014: (Start)
15 is a term because it is an odd number and 15 = 3 * 5, which is semiprime.
39 is a term because it is an odd number and 39 = 3 * 13, which is semiprime. (End)
MAPLE
A046315 := proc(n) option remember; local r;
if n = 1 then RETURN(9) fi;
for r from procname(n - 1) + 2 by 2 do
if numtheory[bigomega](r) = 2 then
RETURN(r)
end if
end do
end proc:
seq(A046315(n), n=1..56); # Peter Luschny, Feb 15 2011
MATHEMATICA
Reap[Do[If[Total[FactorInteger[n]][[2]] == 2, Sow[n]], {n, 1, 400, 2}]][[2, 1]] (* Zak Seidov *)
fQ[n_] := Plus @@ Last /@ FactorInteger@ n == 2; Select[2 Range@ 150 - 1, fQ] (* Robert G. Wilson v, Feb 15 2011 *)
Select[Range[5, 301, 2], PrimeOmega[#]==2&] (* Harvey P. Dale, May 22 2015 *)
PROG
(PARI) list(lim)=my(u=primes(primepi(lim\3)), v=List(), t); for(i=2, #u, for(j=i, #u, t=u[i]*u[j]; if(t>lim, break); listput(v, t))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011
(Haskell)
a046315 n = a046315_list !! (n-1)
a046315_list = filter odd a001358_list -- Reinhard Zumkeller, Jan 02 2014
(Python)
from math import isqrt
from sympy import primepi, primerange
def A046315(n):
def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 17 2024
CROSSREFS
Odd members of A001358.
A046388 is a subsequence.
Cf. A085770 (number of odd semiprimes < 10^n). - Robert G. Wilson v, Aug 25 2011
Sequence in context: A175076 A046337 A359596 * A046372 A025045 A107987
KEYWORD
nonn
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved