login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339100
a(n) = GCD({(2*n-k)*T(n,k)+(k+1)*T(n,k+1), k=0..n}), where T(n,k) stands for A214406 (the second-order Eulerian numbers of type B).
1
1, 6, 1, 60, 1, 42, 1, 120, 1, 66, 1, 5460, 1, 6, 1, 4080, 1, 798, 1, 3300, 1, 138, 1, 10920, 1, 6, 1, 1740, 1, 14322, 1, 8160, 1, 6, 1, 3838380, 1, 6, 1, 270600, 1, 12642, 1, 1380, 1, 282, 1, 371280, 1, 66, 1, 3180, 1, 798, 1, 3480, 1, 354, 1, 567867300
OFFSET
1,2
COMMENTS
Define recursively the rational fractions R_n by: R_0(x)=1; R_{n+1}(x) = (R_n(x)*x/(1-x^2))'. 2*a(n) is the maximal integer that can be factored out of the numerator of R'_n -- staying with polynomials with integer coefficients.
Empirical observations: the prime factorizations of the a(n) follow a pattern: the 2-adic valuation of a(n) is the 2-adic valuation of n; the 3-adic valuation of a(n) is (n mod 2); for p a prime >= 5, the p-adic valuation of a(n) is 0 (if p-1 does not divide n), 1 (if p-1 divides n but p does not) or 2 (if both p-1 and p divide n). So, a(n) = 1 when n is odd, and the prime factorizations of a(n) for the first few even n are:
\ p|
\ | 2 3 5 7 11 13 17 19 23 29 31 37 41 43
n \|
---+-------------------------------------------
2 | 1 1 . . . . . . . . . . . .
4 | 2 1 1 . . . . . . . . . . .
6 | 1 1 . 1 . . . . . . . . . .
8 | 3 1 1 . . . . . . . . . . .
10 | 1 1 . . 1 . . . . . . . . .
12 | 2 1 1 1 . 1 . . . . . . . .
14 | 1 1 . . . . . . . . . . . .
16 | 4 1 1 . . . 1 . . . . . . .
18 | 1 1 . 1 . . . 1 . . . . . .
20 | 2 1 2 . 1 . . . . . . . . .
22 | 1 1 . . . . . . 1 . . . . .
24 | 3 1 1 1 . 1 . . . . . . . .
26 | 1 1 . . . . . . . . . . . .
28 | 2 1 1 . . . . . . 1 . . . .
30 | 1 1 . 1 1 . . . . . 1 . . .
32 | 5 1 1 . . . 1 . . . . . . .
34 | 1 1 . . . . . . . . . . . .
36 | 2 1 1 1 . 1 . 1 . . . 1 . .
38 | 1 1 . . . . . . . . . . . .
40 | 3 1 2 . 1 . . . . . . . 1 .
42 | 1 1 . 2 . . . . . . . . . 1
LINKS
EXAMPLE
In A214406, row number 4 is:
(k=0) (k=1) (k=2) (k=3) (k=4)
1 112 718 744 105
Now,
(2*4-0)* 1 + (0+1)*112 = 120
(2*4-1)*112 + (1+1)*718 = 2220
(2*4-2)*718 + (2+1)*744 = 6540
(2*4-3)*744 + (3+1)*105 = 4140
(2*4-4)*105 + (4+1)* 0 = 420
The GCD of {120, 2220, 6540, 4140, 420} is 60, so a(4)=60.
MATHEMATICA
T[n_, k_]:=T[n, k]=If[n==0&&k==0, 1, If[n==0||k<0||k>n, 0, (4*n-2*k-1)*T[n-1, k-1]+(2*k+1)*T[n-1, k]]]
A[n_]:=Table[(2*n-k)*T[n, k]+(k+1)*T[n, k+1], {k, 0, n}]/.{List->GCD}
Table[A[n], {n, 1, 100}]
PROG
(PARI)
r(n)=if(n==0, 1, (r(n-1)*x/(1-x^2))')
a(n)=my(p=(r(n))'*(1-x^2)^(2*n+1)/2); p/factorback(factor(p))
for(n=1, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A083837 A049213 A165886 * A344918 A174502 A056218
KEYWORD
nonn
AUTHOR
Luc Rousseau, Nov 23 2020
STATUS
approved