login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337174
Number of pairs of divisors of n (d1,d2) such that d1 <= d2 and d1*d2 >= n.
2
1, 2, 2, 4, 2, 6, 2, 6, 4, 6, 2, 12, 2, 6, 6, 9, 2, 12, 2, 12, 6, 6, 2, 20, 4, 6, 6, 12, 2, 20, 2, 12, 6, 6, 6, 25, 2, 6, 6, 20, 2, 20, 2, 12, 12, 6, 2, 30, 4, 12, 6, 12, 2, 20, 6, 20, 6, 6, 2, 42, 2, 6, 12, 16, 6, 20, 2, 12, 6, 20, 2, 42, 2, 6, 12, 12, 6, 20, 2, 30, 9, 6, 2
OFFSET
1,2
FORMULA
a(n) = Sum_{d1|n, d2|n} sign(floor(d1*d2/n)).
a(n) = tau*(tau+2)/4 if tau is even and a(n) = (tau+1)^2/4 if tau is odd, where tau = A000005(n) is the number of divisors of n, i.e., a(n) = A002620(A000005(n)+1) = floor((A000005(n)+1)^2/4). - Chai Wah Wu, Jan 29 2021
EXAMPLE
a(4) = 4; (1,4), (2,2), (2,4), (4,4).
a(5) = 2; (1,5), (5,5).
a(6) = 6; (1,6), (2,3), (2,6), (3,3), (3,6), (6,6).
MATHEMATICA
Table[Sum[Sum[Sign[Floor[i*k/n]] (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
PROG
(Python)
from sympy import divisor_count
def A337174(n):
return (divisor_count(n)+1)**2//4 # Chai Wah Wu, Jan 29 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jan 28 2021
STATUS
approved