login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337172
Numbers k such that L(k+2)^L(k) mod L(k+1) is a Lucas number, where L = A000032.
0
1, 2, 3, 6, 11, 14
OFFSET
1,2
COMMENTS
No other terms < 5000.
EXAMPLE
L(3) ^ L(1) mod L(2) = 4^1 mod 3 = 1 = L(1).
L(4) ^ L(2) mod L(3) = 7^3 mod 4 = 3 = L(2).
L(5) ^ L(3) mod L(4) = 11^4 mod 7 = 4 = L(3).
L(8) ^ L(6) mod L(7) = 47^18 mod 29 = 4 = L(3).
L(13) ^ L(11) mod L(12) = 521^199 mod 322 = 199 = L(11).
L(16) ^ L(14) mod L(15) = 2207^843 mod 1364 = 123 = L(10).
MAPLE
luc:= n -> 2*combinat:-fibonacci(n-1) + combinat:-fibonacci(n):
isluc:= proc(n) local m, phi; phi:= (1+sqrt(5))/2;
m:= round(log[phi](n));
n = luc(m);
end proc:
isluc(1):= true: isluc(2):= true:
select(n -> isluc(luc(n+2) &^ luc(n) mod luc(n+1)), [$1..1000]);
CROSSREFS
Cf. A000032.
Sequence in context: A057758 A057125 A018687 * A361103 A294510 A218155
KEYWORD
nonn,bref,more
AUTHOR
J. M. Bergot and Robert Israel, Jan 28 2021
STATUS
approved