login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336277
a(n) = Sum_{k=1..n} mu(k)*k^3.
8
1, -7, -34, -34, -159, 57, -286, -286, -286, 714, -617, -617, -2814, -70, 3305, 3305, -1608, -1608, -8467, -8467, 794, 11442, -725, -725, -725, 16851, 16851, 16851, -7538, -34538, -64329, -64329, -28392, 10912, 53787, 53787, 3134, 58006, 117325, 117325, 48404
OFFSET
1,2
COMMENTS
Conjecture: a(n) changes sign infinitely often.
LINKS
FORMULA
Partial sums of A334659.
G.f. A(x) satisfies x = Sum_{k>=1} k^3 * (1 - x^k) * A(x^k). - Seiichi Manyama, Apr 01 2023
Sum_{k=1..n} k^3 * a(floor(n/k)) = 1. - Seiichi Manyama, Apr 03 2023
MATHEMATICA
Array[Sum[MoebiusMu[k]*k^3, {k, #}] &, 41] (* Michael De Vlieger, Jul 15 2020 *)
Accumulate[Table[MoebiusMu[n] n^3, {n, 50}]] (* Harvey P. Dale, Aug 15 2024 *)
PROG
(PARI) a(n) = sum(k=1, n, moebius(k)*k^3); \\ Michel Marcus, Jul 15 2020
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A336277(n):
if n <= 1:
return 1
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c -= ((j2*(j2-1))**2-(j*(j-1))**2>>2)*A336277(k1)
j, k1 = j2, n//j2
return c-((n*(n+1))**2-((j-1)*j)**2>>2) # Chai Wah Wu, Apr 04 2023
KEYWORD
easy,sign
AUTHOR
Donald S. McDonald, Jul 15 2020
STATUS
approved