login
A001795
Coefficients of Legendre polynomials.
(Formerly M4407 N1861)
6
1, 1, 7, 33, 715, 4199, 52003, 334305, 17678835, 119409675, 1641030105, 11435320455, 322476036831, 2295919134019, 32968493968795, 238436656380769, 27767032438524099, 203236010537432691, 2989949596465113373
OFFSET
0,3
COMMENTS
Numerators in expansion of sqrt(c(x)), c(x) the g.f. of A000108. - Paul Barry, Jul 12 2005
Coefficient of Legendre_0(x) when x^n is written in term of Legendre polynomials. - Michel Marcus, May 28 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
1/(sqrt(1-x) + sqrt(1+x)) = Sum_{n>=0} (a(n)/b(n))*x^(2n) where b(n) is a power of 2. - Benoit Cloitre, Mar 12 2002
For n >= 1, 2^(n+1)*a(2^(n-1)) = A001791(2^n). - Vladimir Shevelev, Sep 05 2010
a(n) = numerator(binomial(2*n-1/2, n)/(2*n+1)). - Tani Akinari, Oct 22 2024
PROG
(PARI) my(x='x+O('x^30)); apply(numerator, Vec(((1-sqrt(1-4*x))/(2*x))^(1/2))) \\ Michel Marcus, Feb 04 2022
(PARI) a(n)=numerator(binomial(2*n-1/2, n)/(2*n+1)) \\ Tani Akinari, Oct 22 2024
CROSSREFS
Divisor of A048990 and A065097. Apparently a bisection of A002596.
Bisection of A099024.
Sequence in context: A202762 A202757 A266018 * A336277 A209897 A209814
KEYWORD
nonn
EXTENSIONS
More terms from Benoit Cloitre, Mar 12 2002
STATUS
approved