login
A328548
Number of 6-regular bipartitions of n.
5
1, 2, 5, 10, 20, 36, 63, 106, 175, 280, 441, 680, 1034, 1548, 2290, 3346, 4840, 6930, 9837, 13844, 19337, 26810, 36925, 50530, 68741, 92984, 125113, 167490, 223155, 295960, 390825, 513954, 673214, 878480, 1142190, 1479892, 1911051, 2459896, 3156602
OFFSET
0,2
REFERENCES
Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
FORMULA
a(n) ~ 5^(1/4) * exp(Pi*sqrt(10*n)/3) / (2^(9/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 08 2024
MAPLE
f:=(k, M) -> mul(1-q^(k*j), j=1..M);
LRBP := (L, M) -> (f(L, M)/f(1, M))^2;
S := L -> seriestolist(series(LRBP(L, 80), q, 60));
S(6);
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1 - x^(6*k))/(1 - x^k), {k, 1, nmax}]^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2024 *)
CROSSREFS
Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
Cf. A219601.
Sequence in context: A365631 A117487 A263348 * A294536 A325650 A325720
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 19 2019
STATUS
approved