login
A219601
Number of partitions of n in which no parts are multiples of 6.
17
1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 65, 85, 111, 143, 184, 234, 297, 374, 470, 586, 729, 902, 1113, 1367, 1674, 2042, 2485, 3013, 3645, 4395, 5288, 6344, 7595, 9070, 10809, 12852, 15252, 18062, 21352, 25191, 29671, 34884, 40948, 47985, 56146, 65592
OFFSET
0,3
COMMENTS
Also partitions where parts are repeated at most 5 times. [Joerg Arndt, Dec 31 2012]
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Arkadiusz Wesolowski)
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.
Eric Weisstein's World of Mathematics, Partition Function b_k
FORMULA
G.f.: P(x^6)/P(x), where P(x) = prod(k>=1, 1-x^k).
a(n) ~ Pi*sqrt(5) * BesselI(1, sqrt(5*(24*n + 5)/6) * Pi/6) / (3*sqrt(24*n + 5)) ~ exp(Pi*sqrt(5*n)/3) * 5^(1/4) / (12 * n^(3/4)) * (1 + (5^(3/2)*Pi/144 - 9/(8*Pi*sqrt(5))) / sqrt(n) + (125*Pi^2/41472 - 27/(128*Pi^2) - 25/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A284326(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
EXAMPLE
7 = 7
= 5 + 2
= 5 + 1 + 1
= 4 + 3
= 4 + 2 + 1
= 4 + 1 + 1 + 1
= 3 + 3 + 1
= 3 + 2 + 2
= 3 + 2 + 1 + 1
= 3 + 1 + 1 + 1 + 1
= 2 + 2 + 2 + 1
= 2 + 2 + 1 + 1 + 1
= 2 + 1 + 1 + 1 + 1 + 1
= 1 + 1 + 1 + 1 + 1 + 1 + 1
so a(7) = 14.
MATHEMATICA
m = 47; f[x_] := (x^6 - 1)/(x - 1); g[x_] := Product[f[x^k], {k, 1, m}]; CoefficientList[Series[g[x], {x, 0, m}], x] (* Arkadiusz Wesolowski, Nov 27 2012 *)
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 6], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
PROG
(PARI) for(n=0, 47, A=x*O(x^n); print1(polcoeff(eta(x^6+A)/eta(x+A), n), ", "))
CROSSREFS
Cf. A097797.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.
Sequence in context: A326977 A035967 A097797 * A035975 A035984 A035994
KEYWORD
easy,nonn
AUTHOR
STATUS
approved