login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328485
Dirichlet g.f.: zeta(s)^2 * zeta(s-1) / zeta(2*s-1).
3
1, 4, 5, 9, 7, 20, 9, 18, 15, 28, 13, 45, 15, 36, 35, 35, 19, 60, 21, 63, 45, 52, 25, 90, 33, 60, 43, 81, 31, 140, 33, 68, 65, 76, 63, 135, 39, 84, 75, 126, 43, 180, 45, 117, 105, 100, 49, 175, 59, 132, 95, 135, 55, 172, 91, 162, 105, 124, 61, 315, 63, 132, 135, 133, 105
OFFSET
1,2
COMMENTS
Inverse Moebius transform of A034448.
Dirichlet convolution of A055615 with A064840.
LINKS
FORMULA
G.f.: Sum_{k>=1} usigma(k) * x^k / (1 - x^k), where usigma = A034448.
a(n) = Sum_{d|n} usigma(d).
a(n) = n * Sum_{d|n} mu(n/d) * tau(d) * sigma(d) / d, where mu = A008683, tau = A000005 and sigma = A000203.
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (72 * zeta(3)). - Vaclav Kotesovec, Oct 17 2019
From Amiram Eldar, Feb 10 2023: (Start)
a(n) = Sum_{d|n} Sum_{d'|n, gcd(d, d')=1} d'.
Multiplicative with a(p^e) = (p^(e+1)-p)/(p-1) + e + 1. (End)
MAPLE
with(numtheory):
a:= n-> add(mobius(d)*tau(n/d)*sigma(n/d)*d, d=divisors(n)):
seq(a(n), n=1..70); # Alois P. Heinz, Oct 16 2019
MATHEMATICA
Table[n DivisorSum[n, MoebiusMu[n/#] DivisorSigma[0, #] DivisorSigma[1, #]/# &], {n, 1, 65}]
nmax = 65; CoefficientList[Series[Sum[DivisorSum[k, # &, CoprimeQ[#, k/#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
f[p_, e_] := (p^(e + 1) - p)/(p - 1) + e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); prod(i = 1, #p, (p[i]^(e[i] + 1) - p[i])/(p[i] - 1) + e[i] + 1); } \\ Amiram Eldar, Feb 10 2023
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Oct 16 2019
STATUS
approved