login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328482
Number of distinct terms required when n is expressed as a greedy sum of terms of A129912 (number of nonzero digits when n is expressed in greedy A129912-base).
5
0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 3, 4, 4, 5
OFFSET
0,4
FORMULA
a(A129912(n)) = a(A002110(n)) = 1.
For all n, a(n) <= A328481(n).
EXAMPLE
Terms of A129912 (numbers that are products of distinct primorial numbers) begin as: 1, 2, 6, 12, 30, 60, 180, 210, 360, 420, 1260, ...
Number 5 is expressed as 5 = 2 + 2 + 1 = 2*2 + 1*1, when always choosing the largest term which is <= {what is remaining of the original number}. Thus a(5) = 2 (number of distinct terms used, 1 and 2).
Number 21 is expressed as 21 = 12 + 6 + 2 + 1, thus a(21) = 4.
PROG
(PARI)
isA129912(n) = { my(o=valuation(n, 2), t); if(o<1||n<2, return(n==1)); n>>=o; forprime(p=3, , t=valuation(n, p); n/=p^t; if(t>o || t<o-1, return(0)); if(t==0, return(n==1)); o=t); }; \\ From A129912
prepare_A129912_upto(n) = { my(xs=List([]), k=0); while(k<n, k++; if(isA129912(k), listput(xs, k))); List(Vecrev(xs)); };
number_of_distinct_terms_in_greedy_sum(n, terms) = { my(c=0); while(n, if(terms[1] > n, listpop(terms, 1), c++; n %= terms[1])); (c); };
A328482(n) = number_of_distinct_terms_in_greedy_sum(n, prepare_A129912_upto(n));
CROSSREFS
Cf. also A267263.
Sequence in context: A224702 A267263 A060130 * A371091 A257695 A257694
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 19 2019
STATUS
approved