login
A327408
Smallest integer > 0 so that its remainders modulo the first n primes are less than half their respective moduli.
2
2, 4, 6, 10, 16, 16, 70, 136, 210, 210, 442, 786, 786, 786, 6450, 53110, 53110, 247690, 303810, 303810, 813450, 3443146, 5889382, 9327220, 10068256, 63916062, 63916062, 63916062, 285847290, 285847290, 285847290, 285847290, 370793956, 370793956, 370793956, 370793956
OFFSET
1,1
LINKS
EXAMPLE
a(6) = 16.
16 mod 2 = 0 < 2/2
16 mod 3 = 1 < 3/2
16 mod 5 = 1 < 5/2
16 mod 7 = 2 < 7/2
16 mod 11 = 5 < 11/2
16 mod 13 = 3 < 13/2
16 is the smallest integer > 0 satisfying these inequalities for the first 6 primes.
PROG
(PARI) isok(k, vp) = {for (i=1, #vp, if ((k % vp[i]) >= vp[i]/2, return (0)); ); return (1); }
a(n) = {my(k=1, vp = primes(n)); while (!isok(k, vp), k++); k; } \\ Michel Marcus, Sep 08 2019
CROSSREFS
Companion sequence of A327409.
Sequence in context: A113117 A179531 A134682 * A083814 A073805 A352587
KEYWORD
nonn
AUTHOR
Bert Dobbelaere, Sep 07 2019
STATUS
approved