OFFSET
1,1
COMMENTS
Any counterexample to the Goldbach conjecture must have this form.
Conjecture: For all a(n) > 18, a(n) is never equal to 2*q^x where q is prime and x is an integer x > 0. In other words, the product of its totatives is never congruent to -1 (mod 2m).
LINKS
Craig J. Beisel, Table of n, a(n) for n = 1..56
EXAMPLE
PROG
(PARI) for(n=1, 150000, prod_t=1; prod_p=1; prod_r=1; for(k=3, 2*n-3, if(gcd(k, 2*n)==1, prod_t=prod_t*k; ); if(gcd(k, 2*n)==1 && isprime(k), prod_p=prod_p*k*(2*n-k); ); if(gcd(k, 2*n)==1 && !isprime(k) && !isprime(2*n-k), prod_r=prod_r*k; ); ); if(-prod_t%(2*n)==(-prod_p*prod_r)%(2*n), print1(2*n, ", "); ); );
CROSSREFS
KEYWORD
nonn
AUTHOR
Craig J. Beisel, Mar 21 2022
STATUS
approved