# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a327408 Showing 1-1 of 1 %I A327408 #12 Sep 08 2019 04:35:37 %S A327408 2,4,6,10,16,16,70,136,210,210,442,786,786,786,6450,53110,53110, %T A327408 247690,303810,303810,813450,3443146,5889382,9327220,10068256, %U A327408 63916062,63916062,63916062,285847290,285847290,285847290,285847290,370793956,370793956,370793956,370793956 %N A327408 Smallest integer > 0 so that its remainders modulo the first n primes are less than half their respective moduli. %H A327408 Bert Dobbelaere, Table of n, a(n) for n = 1..53 %e A327408 a(6) = 16. %e A327408 16 mod 2 = 0 < 2/2 %e A327408 16 mod 3 = 1 < 3/2 %e A327408 16 mod 5 = 1 < 5/2 %e A327408 16 mod 7 = 2 < 7/2 %e A327408 16 mod 11 = 5 < 11/2 %e A327408 16 mod 13 = 3 < 13/2 %e A327408 16 is the smallest integer > 0 satisfying these inequalities for the first 6 primes. %o A327408 (PARI) isok(k, vp) = {for (i=1, #vp, if ((k % vp[i]) >= vp[i]/2, return (0));); return (1);} %o A327408 a(n) = {my(k=1, vp = primes(n)); while (!isok(k, vp), k++); k;} \\ _Michel Marcus_, Sep 08 2019 %Y A327408 Companion sequence of A327409. %Y A327408 Cf. A002110, A306582, A306612. %K A327408 nonn %O A327408 1,1 %A A327408 _Bert Dobbelaere_, Sep 07 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE