login
A325133
Heinz number of the integer partition obtained by removing the inner lining, or, equivalently, the largest hook, of the integer partition with Heinz number n.
7
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 5, 3, 2, 1, 1, 4, 3, 1, 2, 1, 1, 2, 1, 1, 4, 1, 3, 2, 1, 1, 2, 3, 1, 2, 1, 1, 6, 1, 5, 2, 1, 1, 8, 1, 1, 2, 3, 1, 2, 1, 1, 4, 5, 1, 2, 1, 3, 1, 1, 5, 4, 3, 1, 2, 1, 1, 6
OFFSET
1,9
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
FORMULA
a(n) = A064989(A052126(n)) = A052126(A064989(n)).
EXAMPLE
The partition with Heinz number 715 is (6,5,3), with diagram
o o o o o o
o o o o o
o o o
which has inner lining
o o
o o o
o o o
or largest hook
o o o o o o
o
o
both of which have complement
o o o o
o o
which is the partition (4,2) with Heinz number 21, so a(715) = 21.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[If[n==1, 1, Times@@Prime/@DeleteCases[Most[primeMS[n]]-1, 0]], {n, 100}]
PROG
(PARI)
A052126(n) = if(1==n, n, n/vecmax(factor(n)[, 1]));
A064989(n) = { my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f) };
A325133(n) = A052126(A064989(n)); \\ Antti Karttunen, Apr 14 2019
CROSSREFS
Positions of ones are A093641 (Heinz numbers of hooks). The number of iterations required to reach 1 starting with n is A257990(n).
Sequence in context: A033272 A324907 A331295 * A236338 A284259 A250068
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 02 2019
EXTENSIONS
More terms from Antti Karttunen, Apr 14 2019
STATUS
approved