login
A284259
a(n) = number of distinct prime factors of n that are < the square of smallest prime factor of n, a(1) = 0.
10
0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2
OFFSET
1,6
LINKS
FORMULA
a(n) = Sum_{p|n, p prime and < spf(n)^2} sign(p), where spf(n) (A020639) gives the smallest prime factor of n, and sign(p) = A057427(p) = 1 for all p.
a(n) = A001221(A284255(n)).
a(n) = A001221(n) - A284258(n).
a(n) <= A284257(n).
a(A284262(n)) = n.
EXAMPLE
For n = 4 = 2*2, the prime factor 2 is less than 2^2, and it is counted only once, thus a(4) = 1.
For n = 45 = 3*3*5, both prime factors 3 and 5 are less than 3^2, thus a(45) = 2.
MATHEMATICA
Table[If[n == 1, 0, Count[#, d_ /; d < First[#]^2] &@ FactorInteger[n][[All, 1]]], {n, 120}] (* Michael De Vlieger, Mar 24 2017 *)
PROG
(Scheme) (define (A284259 n) (A001221 (A284255 n)))
(PARI) A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1));
a(n) = if(A(n)==1, 1, A(n)*a(n/A(n)));
for(n=1, 150, print1(omega(n/a(n)), ", ")) \\ Indranil Ghosh, after David A. Corneth, Mar 24 2017
(Python)
from sympy import primefactors
def omega(n): return len(primefactors(n))
def A(n):
for i in primefactors(n):
if i>min(primefactors(n))**2: return i
return 1
def a(n): return 1 if A(n)==1 else A(n)*a(n//A(n))
print([omega(n//a(n)) for n in range(1, 151)]) # Indranil Ghosh, Mar 24 2017
CROSSREFS
Cf. A284262 (where obtains first time value n, also positions of records).
Sequence in context: A331295 A325133 A236338 * A250068 A214566 A213982
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 24 2017
STATUS
approved