OFFSET
1,2
COMMENTS
A maximum of n nonattacking kings can be placed on a 2 X 2n chessboard.
Number of nonequivalent ways of placing n 2 X 2 tiles in an 3 X (2n+1) rectangle under all symmetry operations of the rectangle. - Andrew Howroyd, Dec 16 2018
Number of ways to choose modulo symmetry n vertices from a 1 X (2n-1) square grid with distances > sqrt(2) between the vertices. (Consider the interior 1 X (2*n-1) square grid of the 3 X (2n+1) square grid, or the square grid with the midpoints of the squares of the 2 X 2n chessboard as vertices.) - Wolfdieter Lang, Feb 07 2019
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..3280
Index entries for linear recurrences with constant coefficients, signature (4,-2,-8,8).
FORMULA
a(n) = (n+1)*2^(n-2) + (1 + (-1)^n)^(n/2 - 1) for n > 1.
a(n) = A238009(2*n+1, n). - Andrew Howroyd, Dec 16 2018
From Colin Barker, Dec 21 2018: (Start)
G.f.: x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)).
a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 8*a(n-4) for n>4. (End)
E.g.f.: (exp(2*x)*(1 + 2*x) + 2*cosh(sqrt(2)*x) - 3)/4. - Stefano Spezia, May 14 2023
EXAMPLE
For n = 2 there are a(2) = 4 distinct solutions from 12 that will not be repeated by all possible turns and reflections.
1. 2. 3. 4.
----------------- ----------------- ----------------- -----------------
| * | | * | | | * | | | * | | * | | | | | * | | | |
----------------- ----------------- ----------------- -----------------
| | | | | | | | | | | | | * | | | | | | * |
----------------- ----------------- ----------------- -----------------
MAPLE
seq(coeff(series(x*(1-6*x^2+6*x^3)/((1-2*x)^2*(1-2*x^2)), x, n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Dec 21 2018
PROG
(PARI) Vec(x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)) + O(x^40)) \\ Colin Barker, Dec 21 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Anton Nikonov, Dec 02 2018
STATUS
approved