login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322284
Number of nonequivalent ways to place n nonattacking kings on a 2 X 2n chessboard under all symmetry operations of the rectangle.
3
1, 4, 8, 22, 48, 116, 256, 584, 1280, 2832, 6144, 13344, 28672, 61504, 131072, 278656, 589824, 1245440, 2621440, 5505536, 11534336, 24118272, 50331648, 104859648, 218103808, 452988928, 939524096, 1946165248, 4026531840, 8321515520, 17179869184, 35433512960
OFFSET
1,2
COMMENTS
A maximum of n nonattacking kings can be placed on a 2 X 2n chessboard.
Number of nonequivalent ways of placing n 2 X 2 tiles in an 3 X (2n+1) rectangle under all symmetry operations of the rectangle. - Andrew Howroyd, Dec 16 2018
Number of ways to choose modulo symmetry n vertices from a 1 X (2n-1) square grid with distances > sqrt(2) between the vertices. (Consider the interior 1 X (2*n-1) square grid of the 3 X (2n+1) square grid, or the square grid with the midpoints of the squares of the 2 X 2n chessboard as vertices.) - Wolfdieter Lang, Feb 07 2019
FORMULA
a(n) = (n+1)*2^(n-2) + (1 + (-1)^n)^(n/2 - 1) for n > 1.
a(n) = A238009(2*n+1, n). - Andrew Howroyd, Dec 16 2018
From Colin Barker, Dec 21 2018: (Start)
G.f.: x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)).
a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 8*a(n-4) for n>4. (End)
E.g.f.: (exp(2*x)*(1 + 2*x) + 2*cosh(sqrt(2)*x) - 3)/4. - Stefano Spezia, May 14 2023
EXAMPLE
For n = 2 there are a(2) = 4 distinct solutions from 12 that will not be repeated by all possible turns and reflections.
1. 2. 3. 4.
----------------- ----------------- ----------------- -----------------
| * | | * | | | * | | | * | | * | | | | | * | | | |
----------------- ----------------- ----------------- -----------------
| | | | | | | | | | | | | * | | | | | | * |
----------------- ----------------- ----------------- -----------------
MAPLE
seq(coeff(series(x*(1-6*x^2+6*x^3)/((1-2*x)^2*(1-2*x^2)), x, n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Dec 21 2018
PROG
(PARI) Vec(x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)) + O(x^40)) \\ Colin Barker, Dec 21 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Anton Nikonov, Dec 02 2018
STATUS
approved