login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000639
Number of alkyl benzenes with n carbon atoms: C(n)H(2n-6).
(Formerly M3341 N1344)
2
0, 0, 0, 0, 0, 1, 1, 4, 8, 22, 51, 136, 335, 871, 2217, 5749, 14837, 38636, 100622, 263381, 690709, 1817544, 4793449, 12675741, 33592349, 89223734, 237455566, 633176939, 1691377956, 4525792533, 12129365576, 32556355947, 87508275471, 235529797422
OFFSET
1,8
REFERENCES
N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 71.
R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. p. 22, Eq. (H).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014.
G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall., 93 (1936), 415-443 (p. 422).
G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall., 93 (1936), 415-443 (p. 422). (Annotated scanned copy)
FORMULA
G.f.: (x^6/12)*(B(x)^6+4*B(x^2)^3+2*B(x^3)^2+3*B(x)^2*B(x^2)^2+2*B(x^6)), where B = g.f. of A000598.
EXAMPLE
G.f. = x^6 + x^7 + 4*x^8 + 8*x^9 + 22*x^10 + 51*x^11 + 136*x^12 + 335*x^13 + ...
a(8)=4 because the unique isomers are 1,2-Dimethylbenzene; 1,3-Dimethylbenzene; 1,4-Dimethylbenzene, 1-Ethylbenzene. All have formula C(8)H(10)
MATHEMATICA
m = 100; For[A = 0; i = 0, i <= m, i++, A = Series[1 + x*(A^3/6 + (A /. x -> x^2)*A/2 + (A /. x -> x^3)/3), {x, 0, m+1}] // Normal]; B[x_] = A; (1/12)*(B[x]^6 + 4*B[x^2]^3 + 2*B[x^3]^2 + 3*B[x]^2*B[x^2]^2 + 2*B[x^6]) + O[x]^m // CoefficientList[#, x]& // Join[{0, 0, 0, 0, 0}, #]& (* Jean-François Alcover, Oct 12 2011, updated Nov 24 2016 *)
CROSSREFS
Cf. A000598 (Alkyl radicals).
Sequence in context: A048657 A322284 A175655 * A190795 A052528 A058855
KEYWORD
nonn,easy,nice
EXTENSIONS
Better description from Bruce Corrigan (scentman(AT)myfamily.com), Oct 23 2002
STATUS
approved