login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonequivalent ways to place n nonattacking kings on a 2 X 2n chessboard under all symmetry operations of the rectangle.
3

%I #44 May 14 2023 17:15:40

%S 1,4,8,22,48,116,256,584,1280,2832,6144,13344,28672,61504,131072,

%T 278656,589824,1245440,2621440,5505536,11534336,24118272,50331648,

%U 104859648,218103808,452988928,939524096,1946165248,4026531840,8321515520,17179869184,35433512960

%N Number of nonequivalent ways to place n nonattacking kings on a 2 X 2n chessboard under all symmetry operations of the rectangle.

%C A maximum of n nonattacking kings can be placed on a 2 X 2n chessboard.

%C Number of nonequivalent ways of placing n 2 X 2 tiles in an 3 X (2n+1) rectangle under all symmetry operations of the rectangle. - _Andrew Howroyd_, Dec 16 2018

%C Number of ways to choose modulo symmetry n vertices from a 1 X (2n-1) square grid with distances > sqrt(2) between the vertices. (Consider the interior 1 X (2*n-1) square grid of the 3 X (2n+1) square grid, or the square grid with the midpoints of the squares of the 2 X 2n chessboard as vertices.) - _Wolfdieter Lang_, Feb 07 2019

%H Muniru A Asiru, <a href="/A322284/b322284.txt">Table of n, a(n) for n = 1..3280</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-8,8).

%F a(n) = (n+1)*2^(n-2) + (1 + (-1)^n)^(n/2 - 1) for n > 1.

%F a(n) = A238009(2*n+1, n). - _Andrew Howroyd_, Dec 16 2018

%F From _Colin Barker_, Dec 21 2018: (Start)

%F G.f.: x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)).

%F a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 8*a(n-4) for n>4. (End)

%F E.g.f.: (exp(2*x)*(1 + 2*x) + 2*cosh(sqrt(2)*x) - 3)/4. - _Stefano Spezia_, May 14 2023

%e For n = 2 there are a(2) = 4 distinct solutions from 12 that will not be repeated by all possible turns and reflections.

%e 1. 2. 3. 4.

%e ----------------- ----------------- ----------------- -----------------

%e | * | | * | | | * | | | * | | * | | | | | * | | | |

%e ----------------- ----------------- ----------------- -----------------

%e | | | | | | | | | | | | | * | | | | | | * |

%e ----------------- ----------------- ----------------- -----------------

%p seq(coeff(series(x*(1-6*x^2+6*x^3)/((1-2*x)^2*(1-2*x^2)),x,n+1), x, n), n = 1 .. 35); # _Muniru A Asiru_, Dec 21 2018

%o (PARI) Vec(x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)) + O(x^40)) \\ _Colin Barker_, Dec 21 2018

%Y Cf. A001787, A061593, A061594, A238009, A321614.

%K nonn,easy

%O 1,2

%A _Anton Nikonov_, Dec 02 2018