login
A321865
a(n) = A321860(prime(n)).
15
1, 0, -1, 0, 0, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 0, 1, 0, -1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 5, 4, 5, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 7, 6, 5, 4, 5, 4, 3, 4, 3, 4, 3, 2
OFFSET
1,7
COMMENTS
Among the first 10000 terms there are only 32 negative ones.
Please see the comment in A321856 describing "Chebyshev's bias" in the general case.
FORMULA
a(n) = -Sum_{primes p<=n} Legendre(prime(i),11) = -Sum_{primes p<=n} Kronecker(-11,prime(i)) = -Sum_{i=1..n} A011582(prime(i)).
EXAMPLE
prime(46) = 199. Among the primes <= 199, there are 20 ones congruent to 1, 3, 4, 5, 9 modulo 11 and 23 ones congruent to 2, 6, 7, 8, 10 modulo 11, so a(46) = 23 - 20 = 3.
PROG
(PARI) a(n) = -sum(i=1, n, kronecker(-11, prime(i)))
CROSSREFS
Cf. A011582.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: this sequence (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).
Sequence in context: A075789 A341018 A214323 * A353526 A244544 A159580
KEYWORD
sign
AUTHOR
Jianing Song, Nov 20 2018
STATUS
approved