login
A071838
a(n) = Pi(8,3)(n) + Pi(8,5)(n) - Pi(8,1)(n) - Pi(8,7)(n) where Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x.
15
0, 0, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2
OFFSET
1,5
COMMENTS
a(n) is the number of odd primes <= n that have 2 as a quadratic nonresidue minus the number of primes <= n that have 2 as a quadratic residue. See the comments about "Chebyshev's bias" in A321861. - Jianing Song, Nov 24 2018
Although the initial terms are nonnegative, infinitely many terms should be negative. For which n does a(n) = -1?
The first negative term occurs at a(11100143) = -1. - Jianing Song, Nov 08 2019
LINKS
Wikipedia, Chebyshev's bias
FORMULA
a(n) = -Sum_{primes p<=n} Kronecker(2,p) = -Sum_{primes p<=n} A091337(p). - Jianing Song, Nov 20 2018
MATHEMATICA
Accumulate@ Array[-If[PrimeQ@ #, KroneckerSymbol[2, #], 0] &, 105] (* Michael De Vlieger, Nov 25 2018 *)
PROG
(PARI) for(n=1, 200, print1(sum(i=1, n, if((i*isprime(i)-3)%8, 0, 1)+if((i*isprime(i)-5)%8, 0, 1)-if((i*isprime(i)-1)%8, 0, 1)-if((i*isprime(i)-7)%8, 0, 1)), ", ")) \\ Program fixed by Jianing Song, Nov 08 2019
(PARI) a(n) = -sum(i=1, n, isprime(i)*kronecker(2, i)) \\ Jianing Song, Nov 24 2018
CROSSREFS
Cf. A091337.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), this sequence (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).
Sequence in context: A238643 A140193 A073741 * A157896 A358469 A156072
KEYWORD
easy,sign
AUTHOR
Benoit Cloitre, Jun 08 2002
EXTENSIONS
Edited by Peter Munn, Nov 19 2023
STATUS
approved