login
A321868
Fermat pseudoprimes to base 2 that are octagonal.
4
341, 645, 2465, 2821, 4033, 5461, 8321, 15841, 25761, 31621, 68101, 83333, 162401, 219781, 282133, 348161, 530881, 587861, 653333, 710533, 722261, 997633, 1053761, 1082401, 1193221, 1246785, 1333333, 1357441, 1398101, 1489665, 1584133, 1690501, 1735841
OFFSET
1,1
COMMENTS
Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A000567.
The corresponding indices of the octagonal numbers are 11, 15, 29, 31, 37, 43, 53, 73, 93, 103, 151, 167, 233, 271, 307, 341, 421, 443, 467, 487, 491, 577, 593, 601, 631, 645, 667, 673, 683, 705, 727, 751, 761, 901, 911, 919, 991, ...
First differs from A216170 at n = 505.
LINKS
Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
MATHEMATICA
oct[n_]:=n(3n-2); Select[oct[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
PROG
(PARI) isok(n) = (n>1) && ispolygonal(n, 8) && !isprime(n) && (Mod(2, n)^n==2); \\ Daniel Suteu, Nov 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 20 2018
STATUS
approved