OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
FORMULA
G.f.: Sum_{k>=1} k^6*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(6e+6)/(p^6 + p%4 - 2)), where p%4 is the remainder of p modulo 4. (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = 61*Pi^7/184320 (A258814). - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^6*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024
MATHEMATICA
s[n_, r_] := DivisorSum[n, #^6 &, Mod[n/#, 4]==r &]; a[n_] := s[n, 1] - s[n, 3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
f[p_, e_] := (p^(6*e+6) - s[p]^(e+1))/(p^6 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
PROG
(PARI) apply( A321830(n)=factorback(apply(f->f[1]^(6*f[2]+6)\/(f[1]^6+f[1]%4-2), Col(factor(n)))), [1..30]) \\ M. F. Hasler, Nov 26 2018
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
N. J. A. Sloane, Nov 24 2018
STATUS
approved