login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321828
a(n) = Sum_{d|n, d==1 mod 4} d^12 - Sum_{d|n, d==3 mod 4} d^12.
4
1, 1, -531440, 1, 244140626, -531440, -13841287200, 1, 282429005041, 244140626, -3138428376720, -531440, 23298085122482, -13841287200, -129746094281440, 1, 582622237229762, 282429005041, -2213314919066160, 244140626, 7355813669568000
OFFSET
1,3
FORMULA
a(n) = a(A000265(n)). - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (-1)^(k-1)*(2*k - 1)^12*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
Multiplicative with a(2^e) = 1, and for an odd prime p, ((p^12)^(e+1)-1)/(p^12-1) if p == 1 (mod 4) and ((-p^12)^(e+1)-1)/(-p^12-1) if p == 3 (mod 4). - Amiram Eldar, Sep 27 2023
a(n) = Sum_{d|n} d^12*sin(d*Pi/2). - Ridouane Oudra, Sep 08 2024
MATHEMATICA
s[n_, r_] := DivisorSum[n, #^12 &, Mod[#, 4] == r &]; a[n_] := s[n, 1] - s[n, 3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
f[p_, e_] := If[Mod[p, 4] == 1, ((p^12)^(e+1)-1)/(p^12-1), ((-p^12)^(e+1)-1)/(-p^12-1)]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Sep 27 2023 *)
PROG
(PARI) apply( A321828(n)=sumdiv(n>>valuation(n, 2), d, (2-d%4)*d^12), [1..40]) \\ M. F. Hasler, Nov 26 2018
CROSSREFS
Column k=12 of A322143.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A000265.
Sequence in context: A340304 A364903 A210352 * A038682 A017082 A017166
KEYWORD
sign,easy,mult
AUTHOR
N. J. A. Sloane, Nov 24 2018
STATUS
approved