login
A316343
Concatenation of S[1], S[2], S[3], ..., where S[k] = 0 followed by m 1's, where m = (v+1)^2, v = exponent of highest power of 2 dividing k.
23
0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0
COMMENTS
A word that is morphic and recurrent, but neither pure morphic, uniform morphic, primitive morphic, nor uniformly recurrent.
LINKS
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
EXAMPLE
S[4] = 0,1,1,1,1,1,1,1,1,1.
MATHEMATICA
S[k_] := Join[{0}, Table[1, {(IntegerExponent[k, 2] + 1)^2}]];
Array[S, 20] // Flatten (* Jean-François Alcover, Nov 02 2018 *)
PROG
(Haskell)
a316343_count :: Integer -> Int
a316343_count n = fromIntegral ((v + 1) ^ 2) where
v
| n `mod` 2 == 1 = 0
| otherwise = 1 + (n `div` 2)
a316343_S :: Integer -> [Integer]
a316343_S n = 0 : (replicate (a316343_count n) 1)
a316343 :: [Integer]
a316343 = concatMap a316343_S [1..]
-- Jack W Grahl, Jul 23 2018
CROSSREFS
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Sequence in context: A277674 A309754 A112690 * A288864 A115971 A320007
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 14 2018
EXTENSIONS
More terms from Jack W Grahl, Jul 23 2018
STATUS
approved