login
A316341
Characteristic function of the factorials 1!, 2!, 3!, ...
23
0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0
COMMENTS
A word that is neither morphic nor recurrent.
LINKS
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, and Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
FORMULA
a(n) = 1 if A034968(n) == 1, 0 otherwise. - Antti Karttunen, Nov 07 2018
a(n) = A084558(n) - A084558(n-1) for n>=1. - Alan Michael Gómez Calderón, Jul 31 2024
MATHEMATICA
CoefficientList[Sum[x^k!, {k, 1, 5}], x] (* Jean-François Alcover, Nov 02 2018 *)
PROG
(PARI)
A034968(n) = { my(s=0, b=2, d); while(n, d = (n%b); s += d; n = (n-d)/b; b++); (s); };
A316341(n) = (1==A034968(n)); \\ Antti Karttunen, Nov 07 2018
first(n) = { my(res = vector(n), i = t = 1); while(t < n, res[t+1]=1; i++; t*=i); res; }; \\ David A. Corneth, Nov 07 2018
A316341(n) = for(m=2, n, (n%m || 2>n\=m) && break); n==1; \\ M. F. Hasler, Jan 19 2023
(Python)
def A316341(n):
c, i = 1, 1
while (c:=c*i) < n:
i += 1
return int(c==n) # Chai Wah Wu, Jan 11 2023
CROSSREFS
Equals A012245 prefixed by 0 (up to offset and indexing convention).
Cf. A084558 (partial sums).
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Cf. also A000142, A034968.
Sequence in context: A288736 A270803 A030301 * A284901 A071981 A280910
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 14 2018
EXTENSIONS
Data section extended up to a(120) by Antti Karttunen, Nov 07 2018
STATUS
approved