login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308509
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n/d).
6
1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 9, 2, 1, 17, 28, 33, 6, 4, 1, 33, 82, 129, 26, 24, 2, 1, 65, 244, 513, 126, 182, 8, 4, 1, 129, 730, 2049, 626, 1458, 50, 41, 3, 1, 257, 2188, 8193, 3126, 11954, 344, 577, 37, 4, 1, 513, 6562, 32769, 15626, 99594, 2402, 8705, 811, 68, 2
OFFSET
1,3
LINKS
FORMULA
L.g.f. of column k: -log(Product_{j>=1} (1 - j^k*x^j)^(1/j)).
A(n,k) = Sum_{d|n} (n/d)^(k*d).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, 33, 65, ...
2, 4, 10, 28, 82, 244, 730, ...
3, 9, 33, 129, 513, 2049, 8193, ...
2, 6, 26, 126, 626, 3126, 15626, ...
4, 24, 182, 1458, 11954, 99594, 840242, ...
MATHEMATICA
T[n_, k_] := DivisorSum[n, #^(k*n/#) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
PROG
(PARI) T(n, k) = sumdiv(n, d, (n/d)^(k*d));
matrix(9, 9, n, k, T(n, k-1)) \\ Michel Marcus, Jun 02 2019
CROSSREFS
Columns k=0..3 give A000005, A055225, A073705, A073706.
Cf. A294579.
Sequence in context: A129262 A322263 A279394 * A280514 A246105 A211980
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jun 02 2019
STATUS
approved