login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055225
a(n) = Sum_{k divides n} (n/k)^k.
45
1, 3, 4, 9, 6, 24, 8, 41, 37, 68, 12, 258, 14, 192, 384, 593, 18, 1557, 20, 2794, 2552, 2192, 24, 16730, 3151, 8388, 20440, 35394, 30, 116474, 32, 135457, 178512, 131396, 94968, 1111035, 38, 524688, 1596560, 2530986, 42, 7280934, 44, 8403778
OFFSET
1,2
COMMENTS
a(n) is the number of (nonempty) linear partitions of the linearly ordered set [n] = {1,2,...,n} with blocks of the same size, where each block has exactly one element marked. For instance, for n = 4, we have the following 9 linear partitions (where the marked elements are denoted by *):
. (*)(*)(*)(*), (*2)(*4), (*234),
. (*2)(3*), (1*34),
. (1*)(*4), (12*4),
. (1*)(3*), (123*).
- Emanuele Munarini, Feb 03 2014
FORMULA
G.f.: Sum_{n>=1} -log(1 - n*x^n)/n = Sum_{n>=0} a(n) x^n/n. - Paul D. Hanna, Aug 04 2002
G.f.: Sum_{n>0} n*x^n/(1-n*x^n). - Vladeta Jovovic, Sep 02 2002
Sum_{k=1..n} a(k) ~ 3^((n + 3 - mod(n,3))/3)/2. - Vaclav Kotesovec, Aug 07 2022
EXAMPLE
a(10) = 10^1 + 5^2 + 2^5 + 1^10 = 68 because positive divisors of 10 are 1, 2, 5, 10.
MATHEMATICA
Table[Total[Quotient[n, x = Divisors[n]]^x], {n, 44}] (* Jayanta Basu, Jul 08 2013 *)
Table[Sum[d^(n/d), {d, Divisors[n]}], {n, 1, 100}] (* Emanuele Munarini, Feb 03 2014 *)
PROG
(PARI) vector(44, n, sumdiv(n, d, (n/d)^d))
(PARI) a(n) = sumdiv(n, d, d^(n/d) ); \\ Joerg Arndt, Apr 14 2013
(Maxima) a(n) := lsum(d^(n/d), d, listify(divisors(n))); makelist(a(n), n, 1, 40); /* Emanuele Munarini, Feb 03 2014 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 20 2000
EXTENSIONS
More terms from James A. Sellers, Jul 04 2000
Duplicate g.f. removed by Franklin T. Adams-Watters, Sep 01 2009
STATUS
approved