login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n/d).
6

%I #26 May 11 2021 01:55:03

%S 1,1,2,1,3,2,1,5,4,3,1,9,10,9,2,1,17,28,33,6,4,1,33,82,129,26,24,2,1,

%T 65,244,513,126,182,8,4,1,129,730,2049,626,1458,50,41,3,1,257,2188,

%U 8193,3126,11954,344,577,37,4,1,513,6562,32769,15626,99594,2402,8705,811,68,2

%N Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n/d).

%H Seiichi Manyama, <a href="/A308509/b308509.txt">Antidiagonals n = 1..140, flattened</a>

%F L.g.f. of column k: -log(Product_{j>=1} (1 - j^k*x^j)^(1/j)).

%F A(n,k) = Sum_{d|n} (n/d)^(k*d).

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 2, 3, 5, 9, 17, 33, 65, ...

%e 2, 4, 10, 28, 82, 244, 730, ...

%e 3, 9, 33, 129, 513, 2049, 8193, ...

%e 2, 6, 26, 126, 626, 3126, 15626, ...

%e 4, 24, 182, 1458, 11954, 99594, 840242, ...

%t T[n_, k_] := DivisorSum[n, #^(k*n/#) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, May 11 2021 *)

%o (PARI) T(n,k) = sumdiv(n, d, (n/d)^(k*d));

%o matrix(9, 9, n, k, T(n,k-1)) \\ _Michel Marcus_, Jun 02 2019

%Y Columns k=0..3 give A000005, A055225, A073705, A073706.

%Y Cf. A294579.

%K nonn,tabl

%O 1,3

%A _Seiichi Manyama_, Jun 02 2019