login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370063
Triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs without endpoints with n edges covering k vertices, 0 <= k <= n.
2
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 5, 2, 0, 0, 1, 5, 14, 10, 4, 0, 0, 1, 6, 25, 33, 18, 4, 0, 0, 1, 8, 46, 96, 90, 31, 7, 0, 0, 1, 10, 75, 227, 330, 194, 52, 8, 0, 0, 1, 12, 117, 494, 1033, 962, 416, 82, 12, 0, 0, 1, 14, 173, 982, 2847, 3908, 2591, 800, 128, 14
OFFSET
0,14
COMMENTS
An endpoint is a vertex that appears in only one edge. Equivalently, the degree of every vertex >= 2.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
EXAMPLE
Triangle begins:
1;
0, 0;
0, 0, 1;
0, 0, 1, 1;
0, 0, 1, 2, 2;
0, 0, 1, 3, 5, 2;
0, 0, 1, 5, 14, 10, 4;
0, 0, 1, 6, 25, 33, 18, 4;
0, 0, 1, 8, 46, 96, 90, 31, 7;
0, 0, 1, 10, 75, 227, 330, 194, 52, 8;
0, 0, 1, 12, 117, 494, 1033, 962, 416, 82, 12;
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) / edges(p, w->1-y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)}
T(n)={my(r=Vec(substvec(G(n), [x, y], [y, x]))); vector(#r, i, Vecrev(Pol(r[i]), i)) }
{ my(A=T(10)); for(i=1, #A, print(A[i])) }
CROSSREFS
Row sums are A307316.
Main diagonal is A002865.
Cf. A369932.
Sequence in context: A280452 A096587 A136438 * A059848 A352361 A036865
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 08 2024
STATUS
approved