login
A305559
[0, -1, -1] together with A000290.
1
0, -1, -1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
OFFSET
0,6
COMMENTS
Squares leading to an autosequence of the first kind.
The third sequence of the array
A060576(n+1)= 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
A289207(n)= 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, ...
a(n)= 0, -1, -1, 0, 1, 4, 9, 16, 25, 36, ...
0, 10, 10, 5, 0, 1, 8, 27, 64, 125, ...
0, -113, -113, -68, -23, 0, 1, 16, 81, 256, ... .
The first full vertical is (-1)^n*A033312(n).
From 0, the first two nonzero antidiagonals are 0, -1, 10, -113, 1526, ... = (-1)^n* A176824(n+1).
See OEIS Wiki, Autosequence.
a(n) difference table:
0, -1, -1, 0, 1, 4, 9, 16, 25, ...
-1, 0, 1, 1, 3, 5, 7, 9, 11, ...
1, 1, 0, 2, 2, 2, 2, 2, 2, ...
0, -1, 2, 0, 0, 0, 0, 0, 0, ...
MATHEMATICA
Join[{0, -1, -1}, Range[0, 100]^2] (* Paolo Xausa, Nov 13 2023 *)
KEYWORD
sign
AUTHOR
Paul Curtz, Jun 21 2018
STATUS
approved