OFFSET
1,2
COMMENTS
The game is played on a vertex-colored graph by two players called Builder and Painter. The game starts with an empty graph, i.e., no vertices are present in the beginning. In each step, Builder adds one new vertex to the graph, and a number of edges leading from previous vertices to this new vertex. Builder must not create any cycles, and all components (=trees) may have at most k vertices (k is fixed throughout the game). Painter immediately and irrevocably colors each new vertex red or blue. Painter's goal is to avoid creating a monochromatic (i.e., completely red or completely blue) path P(n) on n vertices (n is also fixed throughout the game). Builder's goal is to force Painter to create such a monochromatic P(n). a(n) is defined as the minimal k for which Builder wins this P(n)-avoidance game with two colors and tree size restriction k.
a(n)=n^2 exactly for all n in the set {1,...,27} U {29,31,33,34,35,39}, and a(n)>n^2 otherwise.
There are constants c_1 and c_2 such that c_1*n^2.01 <= a(n) <= c_2*n^2.59.
LINKS
T. Mütze and R. Spöhel, On the path-avoidance vertex-coloring game, Electronic Journal of Combinatorics, 18(1) (2011), Research Paper 163, 33 pages.
EXAMPLE
For n=28, we have a(28)=791=28^2+7, meaning that the P(28)-avoidance game with two colors and tree size restriction k is a win for Builder for all k>=791, and a win for Painter for all k<791.
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Torsten Muetze, Feb 22 2013
EXTENSIONS
a(51)-a(53) from Torsten Muetze, Apr 22 2014
STATUS
approved