login
A253909
1 together with the positive squares.
8
1, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
OFFSET
0,3
COMMENTS
Also, right border of A246595 arranged as an irregular triangle.
a(n) are the Engel expansion of A070910. - Benedict W. J. Irwin, Dec 15 2016
FORMULA
a(n) = A028310(n)^2.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>=4. - David Neil McGrath, May 23 2015
G.f.: (x^3-4*x^2+2*x-1)/(x-1)^3. - David Neil McGrath, May 25 2015
E.g.f.: 1 + exp(x)*x*(1 + x). - Stefano Spezia, Jan 30 2023
MATHEMATICA
Join[{1}, Range[50]^2] (* Alonso del Arte, Feb 23 2015 *)
Range[0, 50]^2 /. 0 -> 1 (* Robert G. Wilson v, Dec 15 2016 *)
PROG
(PARI) a(n)=max(n, 1)^2 \\ Charles R Greathouse IV, Dec 16 2016
CROSSREFS
Cf. A028310, A070910, A246595. Essentially the same as A000290 and A174902.
Sequence in context: A174902 A000290 A162395 * A305559 A221222 A144913
KEYWORD
nonn,easy,mult
AUTHOR
Omar E. Pol, Feb 12 2015
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Aug 06 2018
STATUS
approved