OFFSET
1,3
COMMENTS
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..300
FORMULA
O.g.f. A(x) satisfies: [x^n] exp( 6*n * A(x) ) = (n + 5) * [x^(n-1)] exp( 6*n * A(x) ) for n>=1.
a(n) ~ c * n! * n^11, where c = 0.00000000002970897246102814... - Vaclav Kotesovec, Mar 20 2018
EXAMPLE
O.g.f.: A(x) = x + x^2 + 8*x^3 + 84*x^4 + 1080*x^5 + 16056*x^6 + 266256*x^7 + 4816080*x^8 + 93638016*x^9 + 1937252160*x^10 + ...
where
A(x) = x * (1 - 5*x*A'(x)) / (1 - 6*x*A'(x)).
RELATED SERIES.
exp(A(x)) = 1 + x + 3*x^2/2! + 55*x^3/3! + 2233*x^4/4! + 141201*x^5/5! + 12458731*x^6/6! + 1435102663*x^7/7! + 206465053425*x^8/8! + 35963535971233*x^9/9! + ... + A300992(n)*x^n/n! + ...
A'(x) = 1 + 2*x + 24*x^2 + 336*x^3 + 5400*x^4 + 96336*x^5 + 1863792*x^6 + 38528640*x^7 + 842742144*x^8 + 19372521600*x^9 + ...
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = x*(1-5*x*A')/(1-6*x*A' +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) /* [x^n] exp( 6*n * A(x) ) = (n + 5) * [x^(n-1)] exp( 6*n * A(x) ) */
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(6*(#A-1))); A[#A] = ((#A+4)*V[#A-1] - V[#A])/(6*(#A-1)) ); polcoeff( log(Ser(A)), n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 19 2018
STATUS
approved