login
A300736
O.g.f. A(x) satisfies: A(x) = x*(1 - x*A'(x)) / (1 - 2*x*A'(x)).
8
1, 1, 4, 24, 184, 1672, 17296, 198800, 2499200, 33992000, 496281344, 7731823616, 127946465280, 2240485196800, 41387447564800, 804353715776000, 16408115358117888, 350584123058300928, 7831051680901885952, 182550106828365115392, 4433782438058087202816, 112031844502468602085376, 2940834866411162315849728
OFFSET
1,3
COMMENTS
O.g.f. equals the logarithm of the e.g.f. of A300735.
The e.g.f. G(x) of A300735 satisfies: [x^n] G(x)^(2*n) = (n+1) * [x^(n-1)] G(x)^(2*n) for n>=1.
LINKS
FORMULA
O.g.f. A(x) satisfies: [x^n] exp( 2*n * A(x) ) = (n + 1) * [x^(n-1)] exp( 2*n * A(x) ) for n>=1.
a(n) ~ c * n! * n^3, where c = 0.0087891365985... - Vaclav Kotesovec, Mar 20 2018
EXAMPLE
O.g.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 184*x^5 + 1672*x^6 + 17296*x^7 + 198800*x^8 + 2499200*x^9 + 33992000*x^10 + 496281344*x^11 + 7731823616*x^12 + ...
where
A(x) = x*(1 - x*A'(x)) / (1 - 2*x*A'(x)).
RELATED SERIES.
exp(A(x)) = 1 + x + 3*x^2/2! + 31*x^3/3! + 697*x^4/4! + 25761*x^5/5! + 1371691*x^6/6! + 97677343*x^7/7! + 8869533681*x^8/8! + 993709302337*x^9/9! + 134086553693011*x^10/10! + ... + A300735(n)*x^n/n! + ...
A'(x) = 1 + 2*x + 12*x^2 + 96*x^3 + 920*x^4 + 10032*x^5 + 121072*x^6 + 1590400*x^7 + 22492800*x^8 + 339920000*x^9 + 5459094784*x^10 + ...
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = x*(1-x*A')/(1-2*x*A' +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) /* [x^n] exp( 2*n * A(x) ) = (n + 1) * [x^(n-1)] exp( 2*n * A(x) ) */
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(2*(#A-1))); A[#A] = ((#A)*V[#A-1] - V[#A])/(2*(#A-1)) ); polcoeff( log(Ser(A)), n)}
for(n=1, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 17 2018
STATUS
approved