login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300717
Möbius transform of A003557, n divided by its largest squarefree divisor.
9
1, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 6
OFFSET
1,8
COMMENTS
Multiplicative because A003557 is. - Andrew Howroyd, Jul 27 2018
LINKS
FORMULA
a(n) = Sum_{d|n} A008683(n/d)*A003557(d).
a(n) = A000010(n) - A300718(n).
a(n) = A003557(n) - A300719(n).
Multiplicative with a(p) = 0 and a(p^e) = (p-1)*p^(e-2) for prime p and e>1. - Werner Schulte, Sep 27 2018
Dirichlet convolution with A003958 equals A000010. - Werner Schulte, Sep 28 2018
a(n) = Sum_{d|n} mu(d)*phi(d)*phi(n/d). - Ridouane Oudra, Nov 18 2019
Dirichlet convolution of A000010 and A097945. - R. J. Mathar, Jun 02 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(gcd(n,k)).
a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(n/gcd(n,k)). (End)
MAPLE
with(numtheory): A003557 := n -> n/ilcm(op(numtheory[factorset](n))):
seq(add(mobius(d)*A003557(n/d), d in divisors(n)), n=1..100); # Ridouane Oudra, Nov 18 2019
MATHEMATICA
Table[DivisorSum[n, MoebiusMu[#] EulerPhi[#] EulerPhi[n/#] &], {n, 108}] (* Michael De Vlieger, Nov 18 2019 *)
f[p_, e_] := If[e == 1, 0, (p - 1)*p^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 06 2022 *)
PROG
(PARI)
A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0, f[i, 2]-1)); factorback(f); }; \\ From A003557
A300717(n) = sumdiv(n, d, moebius(n/d)*A003557(d));
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 0, (f[i, 1] - 1)*f[i, 1]^(f[i, 2] - 2))); } \\ Amiram Eldar, Dec 06 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Mar 11 2018
STATUS
approved