login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Möbius transform of A003557, n divided by its largest squarefree divisor.
9

%I #42 Dec 06 2022 07:57:16

%S 1,0,0,1,0,0,0,2,2,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,6,0,0,0,0,8,0,0,

%T 0,2,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,

%U 0,0,0,4,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,6

%N Möbius transform of A003557, n divided by its largest squarefree divisor.

%C Multiplicative because A003557 is. - _Andrew Howroyd_, Jul 27 2018

%H Antti Karttunen, <a href="/A300717/b300717.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = Sum_{d|n} A008683(n/d)*A003557(d).

%F a(n) = A000010(n) - A300718(n).

%F a(n) = A003557(n) - A300719(n).

%F Multiplicative with a(p) = 0 and a(p^e) = (p-1)*p^(e-2) for prime p and e>1. - _Werner Schulte_, Sep 27 2018

%F Dirichlet convolution with A003958 equals A000010. - _Werner Schulte_, Sep 28 2018

%F a(n) = Sum_{d|n} mu(d)*phi(d)*phi(n/d). - _Ridouane Oudra_, Nov 18 2019

%F Dirichlet convolution of A000010 and A097945. - _R. J. Mathar_, Jun 02 2020

%F From _Richard L. Ollerton_, May 07 2021: (Start)

%F a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(gcd(n,k)).

%F a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(n/gcd(n,k)). (End)

%p with(numtheory): A003557 := n -> n/ilcm(op(numtheory[factorset](n))):

%p seq(add(mobius(d)*A003557(n/d), d in divisors(n)), n=1..100); # _Ridouane Oudra_, Nov 18 2019

%t Table[DivisorSum[n, MoebiusMu[#] EulerPhi[#] EulerPhi[n/#] &], {n, 108}] (* _Michael De Vlieger_, Nov 18 2019 *)

%t f[p_, e_] := If[e == 1, 0, (p - 1)*p^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 06 2022 *)

%o (PARI)

%o A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); }; \\ From A003557

%o A300717(n) = sumdiv(n,d,moebius(n/d)*A003557(d));

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 0, (f[i,1] - 1)*f[i,1]^(f[i,2] - 2)));} \\ _Amiram Eldar_, Dec 06 2022

%Y Cf. A000010, A008683, A003557, A300718, A300719, A003958.

%K nonn,mult

%O 1,8

%A _Antti Karttunen_, Mar 11 2018