login
A299284
Partial sums of A299283.
51
1, 8, 30, 78, 162, 292, 478, 731, 1061, 1478, 1992, 2614, 3354, 4222, 5228, 6383, 7697, 9180, 10842, 12694, 14746, 17008, 19490, 22203, 25157, 28362, 31828, 35566, 39586, 43898, 48512, 53439, 58689, 64272, 70198, 76478, 83122, 90140, 97542, 105339, 113541
OFFSET
0,2
FORMULA
From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>6.
(End)
MATHEMATICA
LinearRecurrence[{3, -3, 1, 1, -3, 3, -1}, {1, 8, 30, 78, 162, 292, 478}, 50] (* Harvey P. Dale, Mar 30 2024 *)
PROG
(PARI) Vec((1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Feb 11 2018
CROSSREFS
Cf. A299283.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A195753 A100175 A063489 * A348461 A002417 A126858
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 10 2018
STATUS
approved