OFFSET
0,2
REFERENCES
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #14.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Reticular Chemistry Structure Resource (RCSR), The sve tiling (or net)
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
FORMULA
G.f.: (x + 1)^5 / ((x^2 + x + 1)*(1 - x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5. - Colin Barker, Feb 09 2018
a(n) = 2*(8 + 24*n^2 + A099837(n+3)/2)/9 for n > 0. - Stefano Spezia, Jun 06 2024
MATHEMATICA
LinearRecurrence[{2, -1, 1, -2, 1}, {1, 7, 23, 50, 87, 135}, 60] (* Harvey P. Dale, Apr 01 2018 *)
PROG
(PARI) Vec((1 + x)^5 / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 09 2018
CROSSREFS
Cf. A219529.
See A299261 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Cf. A099837.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 07 2018
STATUS
approved